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Abstract

We consider the form of the radio-frequency (RF) or dielectric input expression in the heat equation which
arises in the modeling of the curing of epoxy adhesives in bonding of composites. We review two standard
derivations of a commonly used expression for the RF heating source term. In this context we discuss
difficulties involving the associated inherent polarization assumption and asymptotic behavior of dielectric
parameters as a function of the frequency of the RF signal. These difficulties cast doubt on the validity of the
standard RF expression. We then use two standard polarization models (Debye and Lorentz) to demonstrate
how one can systematically derive general RF heating expressions which do not suffer the inconsistencies

that arise in the standard RF expression.



1 Introduction

The use of radio-frequency (RF) electromagnetic energy for the curing of adhesives is a commercially
important process. The complexity of this process, one involving phase transitions and exothermic
chemical reactions, provides a number of interesting scientific and technical questions and challenges. The
application of interest involves the adhesive bonding of sheet molding compound (SMC), a glass fiber
reinforced polyester commonly used in the automotive industry for exterior body panels. In this process, a
thin layer of nonmagnetic adhesive is placed between two sheets of SMC. This adhesive "sandwich” is
placed between two aluminum electrodes which contact the part. A high voltage (e.g., 1-10 KV) electric
field is applied across the part at 30 MHz. The field passes through the sheet of SMC, which 1is relatively
non-dielectric (i.e., a conductor), and into the dielectric adhesive. The adhesive heats and eventually cures
to bond the sheets of SMC together. One interesting computational challenge is to model and predict the
heating of adhesives so that precise control algorithms can be developed for the production process. We
have in [Banks, et. al., 1998] developed such a model along with an efficient computational simulation
method.

The model used to describe the heating of the adhesive is a 3-dimensional nonlinear heat

equation [Bejan, 1993, p. 16], [Malaczynski and Cipinski, 1996, p. 107]

oT . .
pcpa = v'(K'VT)"f'qex"f'QTf

where p is mass density, ¢, is specific heat, pc, is volumetric heat capacity, and « is thermal conductivity of
the adhesive which, of course, may all be dependent on T' (e.g., see [Banks, et. al., 1998]). The term gy
represents the rate of heating due to an internal exothermic reaction and ¢,; is the rate of heat generated
from conversion of electrical energy to molecular vibrational energy. (Here the overdots, which are
standard notation, represent rates, not actual time derivatives). Our discussions here focus on the form of
the ¢,; term. Other aspects of the model, including a detailed explanation of the exothermic term q..,
which depends on the degree of cure and temperature in a nonlinear manner, are discussed in the

paper [Banks, et. al., 1998].

In this note we address issues related to the RF input term ¢,; and the validity of a commonly used



form of this term. In our discussions we offer possible alternatives to the usual expression found in the
research literature along with suggestions as to why these alternatives might be more appropriate in certain

applications.

2 Review of derivation of standard RF term

In investigating the term ¢,;, one encounters the following form which is widely used in literature
[Bunget and Popescu, 1984, p. 17], [Frohlich, 1958, p. 14], [Malaczynski, 1988, p. 1271],

[Malaczynski and Cipinski, 1996, p. 107], [Ross, 1982, p. 5824], [Scaife, 1989, p. 13], [White, 1973, p. 48]:

G = wepep tan 6 B4y (1)

Here w is the frequency of the RF bonder, £y is the permittivity of free space, e = % is the relative

dielectric constant where ¢ = &/ — i is the complex permittivity, tan é = ES—I,I is the dielectric loss tangent,

and ERrprs is the root mean square strength of the electric field being applied to the part. Here we consider

first the method found in [Frohlich, 1958] to derive (1).

2.1 Frohlich’s Derivation

Much of the literature tacitly assumes that dielectric heating is accomplished through dipolar rotation and
we shall make this assumption for the present. This means that energy dispersion/conversion via
polarization is of foremost importance. A first step in deriving (1) is understanding the assumptions which

1"

lead to the definition tané = %-. Following Frohlich, we consider the case in which one applies a periodic
electric field E = Fy coswt where Ejy, the magnitude of the electric field, is independent of time and w/27
is frequency in cycles per second. In this note we will denote the electric flux density (or displacement) by
D = ggeo F + P where P is the polarization and ¢4, is the upper limit for € as w — oo [Frohlich, 1958, p.
5]. This differs from much of the literature where the convention is D = ¢g £ + P, but this change is
necessary to ensure that the time domain polarization formulations are consistent with the frequency

domain formulations often found in literature. Additionally, in some of the literature, derivations are

carried out in the Gaussian system where £( 1s not present in the definition of D. Since our considerations



are carried out in the mks system they may differ slightly (by scale factors) from those. As
in [Frohlich, 1958], we assume that if F is periodic in time, P will also eventually be periodic in time. Then
D will also be periodic in time since D = egeoo ' + P. (In general this is not true. For example, in a Debye
or Lorentz medium, P is only asymptotic to E.)

In the Frohlich derivation one also assumes that while D will be of the same period as F, it will not
necessarily be in phase with E. The rationale is that matter does not respond instantaneously to
excitement induced by electromagnetic waves, but will respond with some hysteresis. This phenomenon

can be expressed by the widely used expression (e.g., see [Stuerga and Gaillard, 1996, p. 95])

P(t) = /t_r K(t —s)E(s)ds,

which embodies the assumption that the polarization at time ¢ depends on the electric field over an
immediate past period of length r. If we consider a two point quadrature (for example, a trapezoid rule for
the integral -see [Burden and Faires, 1993, p. 176]) using the endpoints, from this polarization assumption

we obtain an approximation of the form
P(t)~ K1 E(t)+ K2E(t —7r)

where K = K (0) and K3 = ZK(r). This means that P depends on E at a past time. Therefore there is
a delay in P and hence in D. This delay is represented by a phase shift §. Let Dy denote the magnitude of

the electric displacement D. Then

D = Dgcos(wt—8)
= Dg(coswt cos § + sinwt sin §)
= (Dgcosd)coswt + (Dgsin §) sinwt
D = Djcoswt+ Dysinwt (2)
where D; = Dgcosé and Dy = Dgsiné.

For most dielectrics, Do will be proportional to Fy and Dg/Eq will depend on factors such as

frequency, amplitude, temperature and humidity. For the Frohlich derivations, however, one assumes that



¢’ and ¢” depend solely on frequency. We introduce £'(w) and ¢”(w) as
D1 = €/E0 D2 = EIIEO,

and note that the frequency dependence of ¢’ and £” is not directly an issue for our application to curing of
adhesives since we work at only one frequency in our experiments. We have Dy = &' Fg = Dg cos § and

Dy =¢""Eq = Dysiné and consequently:

e Dgsiné
g’ Dgcosé an (3)

More generally, we note that for a general electric field E(t) = Egei*?, the formulation from (2) and (3) is

equivalent to

D = Dpyelwt=%) = (Dg cosé — iDg sin 6)6“‘”

= (¢ —ie")Epe™ = ¢F

where ¢ = &/ — i” is the complex permittivity.

We continue the derivation of (1) using the equation:
dU =dQ + EdD 4)

where dU is the increase in total energy per unit volume, d@ is the influx of heat per unit volume, and
EdD is the influx of electromagnetic energy into the dielectric per unit volume if the displacement D is
increased by dD (see Section 2.1.1 below for an explanation of this term) possibly due to a change in the
field strength F at a constant temperature or to a change in temperature at a constant E [Frohlich, 1958,
p. 11]. We calculate the amount of electric energy transformed into heat on an average of one period. Since
we assume that the total energy is kept constant and E is periodic, U must be constant and hence dU = 0
in equation (4); this yields

dQ = —EdD

and hence over a period of [0, 27/w] we have

27 fw 27 fw 27 fw D
/ dQ = _/ EdD = _/ 2Py,
0 0 0 ot



Then the average (over one period) rate of loss L of energy from the electric field (the heat produced per

second per unit volume) is given by

1 27 fw 27 fw 27 fw D
oL 40 - w 1Q = w / 0
27 0

o Jo 27 Jq

We recall F = Fycoswt, and from (2) we have D = &' Fjy coswt + &” Egsinwt, and hence,

27 fw .
w 0 cos wt O sin wt
L = %Eg/o coswi(e " + e 5 )dt

(.dEg /27r/w Y, y /27r/w
= — ——(cos” wt)dt + e"w cos® wt dt
27T ( 0 2 8t( ) 0

wEZe 9 2w w?E? , 7
= — cos” wt —e (=
2r 2 |0 + 27 (w)
e Biw
5

Since £ = ¢’ tan §, we thus have

1
L = Eal(tan 6)E§w

g,
—gg—wkEs tan é
2 060 0

= %EOE'RwEg tan 6.
If we let Epprs = Eo/\/i then we have
=L =cocqwEhygtans
which is exactly equation (1).

2.1.1 Origin of EdD term

We return to consider the rationale behind using the term EdD as we did in section 2.1 (e.g., the rationale

behind (4)). We begin with Maxwell’s Equations:

0B

VxE = 5 (6)
oD

vV-D = p

vV.-B = 0



where D = D(F) and B = B(H). If we multiply (7) by E, (6) by H and subtract, we obtain

E-(VxH)—H.(VXE):E~(%—?+J)+H~(aa—f).

Using the identity A-(V x B) — B-(V x A) =V - (B x A) we write

oD 0B
which can be rewritten as
oD 0B
EF - — 4+ H — (E x H E-J=0.
( 5 T at)“Lv(XH J=0
If we assume that B = pgH,
oD OH
FE.— H- —)+V-S+F-J=0
( ot + Ho 8t)+\/-/+\z-/

(®) (c)

(a)
where S = F x H is the Poynting vector. The term (b) gives us the rate of efflux of E-M energy per unit
volume. The term (c) gives us the rate of conversion of E-M energy into other types of energy per unit
volume. Therefore, by conservation of energy, (a) must represent the rate of change of energy content per

unit volume. We further note that

OH _po 0 oy _ O poll”
ol - =55 (H) =575

where %uon is the density of magnetic energy. As a result it is usually suggested that [ E(D)dD is the
density of electric energy, which finally suggests that FdD is the change of energy density (per unit

volume) connected with a variation of D by dD.

2.2 Necessity for alternate derivations

In studying the derivation above and the resulting expression (1), we encountered several problems with
both the intuitive behavior of the RF term at high frequencies and with the implicit assumptions made
about polarization underlying the derivation. We discuss these difficulties here to establish that there is a
necessity for alternate derivations and interpretations for ¢, ;.

In general we have D = ggeoo E + P = ¢F or in frequency domain f)(w) = E(W)E(w) where D and E

denote the Laplace transforms of D and E, respectively and the complex permittivity is



e(w) = gre(w) + iim(w) = &’ — ic”. We note that (1) can be written as ¢, = we” F%,,6. As w — 0 we
approach a static field for which there is no dielectric loss and the permittivity approaches a constant

denoted gqge; where €5 is the static dielectric constant. As a result, we expect to see

g"w) — 0 as w—0
(8)

g(w) — eoes as w—0.
Continuing our heuristic intuition-based arguments, we consider &’ and ¢” as w — oco. Clearly we do not
want €’ to become unbounded as w becomes unbounded and so we require €’ to approach some constant.
However, if ¢/ approaches a nonzero constant then ¢,; will become unbounded as w becomes unbounded,
which is undesirable behavior since we expect a finite bound on ¢,; for a given material. Hence, the
limiting constant for ¢”” must be zero or ¢’ — 0 as w — co. All materials have inertia and hence as w — oo,

the dielectric material does not move and the RF electromagnetic signal must move at the speed of light.

Therefore, by definition of £o, we expect

g'w) — 0 as w — o0
(9)
g'(w) — £pfeo as w — 0.
Thus, if (1) is a correct expression we intuitively expect the limiting behavior for &', " given in (8), (9). As
we shall see below, this can lead to inconsistencies.

A slightly different approach to required asymptotic behavior of dielectric parameters involves

consideration of general polarization models in the frequency domain of the form

~—

]5(5) = Eop(—SE(s),

q(s)
where P and E are Laplace transforms of P and E, respectively, and p(s), q(s) are polynomials in s.

Letting s = ww, from D = gpe £ + P we have

D) = Fww+iﬁgqﬁw)

goq(iw)p(iv) | -

= |0t + ———— | B(w),
[ G |7
where z and |z| denote the usual complex conjugate and amplitude, respectively, of z. If

(degree of p)<(degree of q) then D — gpeqo E as w — 0o and we have what is sometimes defined as a stable

material polarization model. We note that a model must be stable in order for it to satisfy (8) and (9).



2.2.1 Polarization assumptions

In this section we describe polarization assumptions implicit in the derivation of Frohlich to obtain (1).
There are two ways to view the polarization. The first is to write P as a function of £ (this will result in
(11) below), while the second is to write it as a function of both F and E (this results in (12) below). We
begin again with D = ggeoc £ 4+ P and recall that we are working with the periodic case in which

F = FEycoswt and D = Dy cos(wt — §). We have
Dy cos(wt — &) = €9€0o Fg coswt + P

or

P = Dy cos(wt — 8) — £9ec0 B coswi.

We assume Dy is proportional to Eq (i.e., Dy = BEy where 3 # 0 may depend on w) and substitute into

the above equation. In the case where we write P as a function of E we have

P = pEgcos(wt — ) — egens Fy coswi
= PFEy(coswtcosé + sinwtsiné) — egess Eo coswi (10)

= PEcosé+ py/E: — FZcos?witsiné — gpeao E

= PEcosé+ p/E:— E?siné — cpea B
= E(Bcosbd —cpeen) + 31/ EZ — E?siné.

Thus we have

P =FE(Bcosbé —epecs) + 31/ FEZ — E?sin §, (11)

from which we immediately observe that P(—E) # —P(F) unless § =0or 8 =0.1f 6 =0 (i.e., D = ¢F),
we have P = F(f — €0« ) = xE which is the standard polarization law for a linear (sometimes also called
ideal) medium [Reitz, et.al., 1993, p. 110] and no apparent paradoxes arise. However, if we reverse the field
E, in a dipolar medium we must reverse the polarization P, which implies P(—F) = —P(F) and P = P(F)
must be odd in E. As we have already observed from (11), for § # 0, 8 # 0, this is not true of the
polarization implicit in the Frohlich derivation of (1). Therefore (11) is not a reasonable or valid

polarization constitutive relation for any dipolar material.

10



On the other hand, if we begin with (10) and proceed in a slightly different manner, we also obtain

inconsistencies. We have

P = pPEy(coswtcosd + sinwtsiné) — egeos Fo coswi
B BEy  d .
= E(fcosé—epees) — " (dt coswt)sin &

d
= FE(fcosé—epees) — g(an coswt)sin &

dF .
= FE(fcosé—egens) — g% sin 8.
Thus this argument leads to
P=aE +bE (12)
where a = fcosé — ggeo and b = —g sin 6. The second potential inconsistency can be illustrated by

studying the form of ¢ implicit in (12). We take the Laplace transform of (12) to obtain

P= (a+b5)E

B8

where a = $cosé — €geco and b = —Z sin 6. Hence

D(w) = (£0fco + a4+ ibw)E
= [(€0foo +a) +i(bw)] E

= ([J’cosé—i—i(—%d sin é) E

= |Bcosé—ifBsiné| E (13)

which relates 3 to the expressions for ¢’ and £’ defined in Section 2.1. Recalling the expected asymptotic

behavior of ¢’ and €” in Section 2.2 leads to inconsistencies for § in light of (13). To see this, we note that
in the Frohlich derivation it is not explicitly stated whether or not the phase shift é is frequency dependent.
From (3), it is unlikely but possible that tané is independent of w even though £ and ¢ generally are not.

If § is not frequency dependent (i.e., § # §(w)) we see from (13) that in order for (8) to hold we must have

£0€s

cos é

simultaneously § — and f — 0, as w — 0, which leads to a contradiction. A similar contradiction

arises for (9). Thus if § # §(w), (8) and (9) are violated. In fact, § should depend on frequency for a

number of reasons, among them that the delay time should increase as frequency increases. If we assume

11



8 = 8(w) then the asymptotic behavior must be of a certain form in order to prevent apparent
contradictions. This will be detailed below.

In a number of cases, permittivities based on other polarization models do meet the requirements of
(8) and (9). We illustrate this with examples involving two common polarization models. We first consider

the Debye model [Reitz, et.al., 1993, p. 514]:

. 1 s — Coo
pylp_lE—en)p

; .
where 7 is the relaxation time, ¢, is the static dielectric constant, and £+, is the limiting value of the

permittivity as the frequency becomes unbounded. We take the Laplace transform to obtain

co(€s — €o0) £

1 .
—)P = E.
s+ )

T

Hence

Taking s = iw we have

- <50500 4+ Soles _26?)) i (WW(ES - fw)) E. (14)

As w — 0, it is clear that ¢/ — ege, and €’ — 0. As w becomes unbounded we see that ¢’ — gge and
g — 0, which is exactly the behavior required by (8) and (9).
We next consider the Lorentz model which is described in detail in [Reitz, et.al., 1993, pp. 495-499]
given by
P+ %P +wiP = eowf,E.
Here 7 is again the relaxation time, wq is the natural frequency of the undamped oscillator, and
wp = Ne/egm where N is the number of charges per unit volume, e is the displaced charge and m is mass

of the particle in the damped harmonic oscillator paradigm that is the basis of the Lorentz model. Again,

12



we take the Laplace transform and obtain
95 1 - 927 97
s"P+ —sP+wiP = eow, £
T

and taking s = iw we have

2
P

T(wi — w?) + iw

~ EQTW
P =

Using again D = ggeoo £ + P we find

[ 2
~ EQTW
D = |egfo + ——FE——
e T(w? —w?) + iw

[ c 2 9y - 27
N P o(T(wg —w?) zw)rwp P
2 (wi — w?)? + w?
o 4 607’2((_08 — w2)wg . 60(.0ng i (15)
= oo —1 .
0 Tz(wg —w?)? 4?2 7'2((.0% —w?)? 4 w2

el el

As w — oo we see that ¢/ — gpeo and ¢” — 0. Additionally, as w — 0,¢"” — 0, but

507'2wgwf,
2w

e = epfes +
and it is not clear that this is equal to £9e;. However, if we let wg = wl(es — £00) [Scaife, 1989, p. 59], then
g’ — epe; as required in (8) and the Lorentz model satisfies (8) and (9).

We turn our attention to the form of ¢,; in (1). Clearly ¢, — 0 as w — 0 since we know &” — 0 as
w — 0. As w becomes unbounded, however, the behavior of ¢,; is not as clear. Since we want ¢,; to
approach some constant as w becomes unbounded, we want ¢’/ — 0 faster than w — oco. In order for this to
hold, ¢ must behave like # for some a > 0. Similarly, tan § must behave like ﬁ If this is true, as w
becomes unbounded ¢,; will behave like w% which approaches 0 for @ > 0 and approaches a constant for
a = 0. If this is not true, ¢,y will become unbounded as w becomes unbounded, and we have an objection
to (1).

We note that stability is not enough to guarantee that ¢,; will approach some constant as w becomes
unbounded. Stability guarantees only that £ approaches 0, giving no information on the rate at which &”
approaches 0 relative to the rate at which w becomes unbounded. Therefore, we have a stronger restriction

on the materials whose behavior can be approximated by (1). In Section 3 we derive alternatives to (1)

which satisfy this added restriction.

13



2.3 Alternate derivation of standard RF term

Since we encounter difficulties with the implicit polarization assumption in the derivation in Section 2.1, we
present a derivation of (1) with arguments that do not involve the polarization. This derivation, based on
the report [Lord, 1983] and arguments in [White, 1973], relies on Joule’s heating law along with a number
of other somewhat questionable tacit assumptions. Again one obtains the standard RF heating rate term
(1), but from energy considerations. Joule’s heating law [Elliot, 1993, p. 489], under assumptions of no
conduction, radiation, or other losses, i.e., 100% efficiency, is given by

au

where U 1s internal energy, o represents conductivity, and E represents the instantaneous electric field in
the dielectric. We note that the dielectric must satisfy Ohm’s Law (J = ¢ F, a standard assumption for
linear isotropic materials [Reitz, et.al., 1993, p. 167]) in order for this form of Joule’s law to be valid. From

(16) we have over any time period [tg, ]

13 d 13
w_ / Bt
to dt to

or, assuming o constant,
t
AU = 0/ E2dt where AU = U(t) — U(to).
to

If we further assume a periodic field £ = Fgycoswt, then we have

t
AU = UEg/ cos?ws ds
to

t
1
= UEg/ 5[1—|—c052w5]ds
to

1 1
= 0E§[§3 + o sin 2ws];,

1 1 1
= aEg(i(t —to) + Esin?wt — Esin 2wig)

~0 ~0

where the second and third terms in the last expression are very small (and hence neglected) because RF

heating involves w of approximately 106 — 107 Hz. If we assume ¢y = 0, we have

1
AU = 5aEgt.

14



We next consider the conductivity ¢ and argue that it is given by o = wegpel; tan §. We note that if (1) is to
hold, this must be the case.

The derivation is suggested by White [1973] who notes that in the literature conductivity is
commonly written ¢ = we”. Using this along with the definition of " given in Section 2.1 we see that

c = we'tané

/

€
= weg—tané
€0

= wepeR tané.

AU

., we see that the rate of absorption L can be written

With this form for ¢ and the expression for

AU 1 1
I = — = io'Eg = 5@505}2513 tan é.

Setting Frys = Eo/\/i we obtain

=L =wegely Fhprgtan é.

We see that this derivation yields exactly the same expression as the Frohlich derivation. Although this
derivation does not depend explicitly on the polarization assumptions found in our earlier derivation, they
are inherent in our definitions of o and therefore this derivation leads to the same conceptual difficulties as
the previous one. Moreover, the assumptions (implicit as well as explicit) inherent in the arguments (e.g.,

constant conductivity, ohmic rather than dielectric heating, etc.) really are not viable for most dielectrics.

3 Alternate RF expressions

At this point we briefly summarize the difference between ionic and dipolar conduction as presented in
[White, 1973]. In general adhesives, ions naturally exist. Concentration is dependent on chemistry,
presence of water and other impurities or contamination. These ions are electrically charged and as a result
are attracted or repulsed by electric fields. The ions then collide many times (depending on the number of
random ions, density of material and the frequency of the field) with other un-ionized molecules which
provides a two step conversion process in which electric field energy is converted into ordered kinetic energy

and then into disordered kinetic energy where it is appropriate to regard it as heat. Dipolar conduction, on

15



the other hand takes place due to the dipolar rotation of the molecules in the material. Here there is a
conversion of energy from electric field energy to potential energy as the electric field builds up and then to
stored random kinetic or thermal energy in the material as the field dies down [White, 1973, p. 47]. We
feel that the epoxy system which we are modeling has very low ionic content. Hence, for our derivations
below we will assume all heating is dipolar, but in reality, depending on the material, there may be other
ionic contributions.

Since we have shown that different derivations of (1) depend implicitly on a polarization model with
some inconsistencies, we now derive alternate forms of the ¢,; expression based on the Debye and Lorentz
polarization models often assumed in the electromagnetic materials literature. We derive first a
Debye-based heating expression and discuss its asymptotic behavior and then do the same with a
Lorentz-based expression. We do this to illustrate the considerations that must be incorporated into any

serious effort to derive general RF expressions.

3.1 Derivation of Debye-based RF expression

We wish to derive an RF heating term based on a Debye polarization model. Recall (see Section 2.2.1) that
the Debye model is represented by the equation

- 1 s = Coo
p+_p:ME. (17)
T

T

If we let a = % and b = ﬂsfﬁl, we have
P+aP=bE. (18)

Again we assume E = Ejcoswt where w/27 is the frequency in cycles per second. Substituting into (18)
we obtain

P4aP= bFEqycoswt

which yields the solution

t
P(t) = Ppe™ " + one_‘”/ e cosws ds. (19)
0

Substituting (19) into the equation D = ggeec F + P, we find
t

D = e By coswt + Pye™ 4+ bEge™ % / e cosws ds. (20)
0
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As in the previous derivations (see (5)) we have

27 fw D
L=2 2P 4
27T 0 at
So from (20) we obtain
w 27 Jw 5 t
L = / Eg coswt— |egeeo By coswt + Ppe™ % + bEOe_(”/ e® cosws ds| dt
27]' 0 at 0
w T gpene D Py ) 8 t
= %Eg/o 5 g(cos2 wt) + E—Ocoswt%(e_‘”) + bcoswt% [e“”/o e’ cosws ds] dt
P 27 jw 27 fw 9 t
= iEg _a_o/ e coswt dt+b/ coswt—/ e cosws ds dt| .
2 Eo 0 0 6t 0

Carrying out the remaining integration, we find

w . |:(l2P0 (6—27ra/w _ 1) b(w7T(t12 4 wZ) _ a3€—2ﬂ'a/w 4 a3):|
27

L=—F
"1 Eq a? 4 w? (a? + w?)?
and if we let Frpyrs = %, we have an alternate RF term:

a’P, (6—27ra/w —-1) b(wr(az +w2) — aBe—2malw 4 a3)
7Eq a? + w? m(a? + w?)?

q':L:w[ :|E12~2MS (21)

where a = % and b = 2 —ce)

T

We study the behavior of this term which can be rewritten
q= WFEJZ%MS

where T represents the bracketed term in equation (21). This has the same form as (1), but the constants
must be interpreted differently (in (1) T is given by ege’; tané). It is easily seen that as w approaches 0,

I — %(—%‘; + €0(5s — €)), which is constant and hence ¢ — 0, which is the same behavior found for (1).

As w approaches infinity, however, we see much different behavior. We expand T in (21) to obtain

(a) (®) (c)
a?Py | e~2malw 1 bwa?

7Ey a? +w? a4 w? +(a2—|—w2)2

b3 ba36—27ra/w a3
([l2+(.02)2 7-‘-(&2 +w2)2 7T((12+(.02)2 :

(d) (e) )

Clearly terms (a), (b), (e), and (f) go to 0 as w — oo, and by applying L’Hopital’s rule to the remaining

terms we see that they too approach 0 as w approaches infinity. If we relate T' to ¢” in the standard term
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and recall our discussion of the desired behavior of €’ in Section 2.2.1 where we let ¢;,,, = ¢, this is exactly
what we expect to see. If we now look at the entire term given in (21), using the same methods for taking
the limits as above, we find that as w — oo,

i—b= go(es —eoo).
That is, as the frequency becomes very large, the rate of heating will approach a finite constant value, as

discussed in Section 2.2.1.

3.2 Derivation of Lorentz-based RF expression

Another common polarization model is the Lorentz model. Following the same steps used Section 3.1, we

derive an RF term based on this model. Recall that the Lorentz model is represented by the equation

5, Ly 2 2

P+ —P+wyP =¢eow, E. (22)

T
If we let a = %,b = wg, and ¢ = Eowz, we have
P+aP+b*P =cE. (23)
We assume F = Fj coswt and substitute into (23) to obtain
P + aP + 2P = cEycos wt.

After applying the variation of constants formula, we find a solution P to (23)

Po((i’)‘lt/\Q _ 6)‘2t>\1) N Pl(e)\gt _ eAlt)

Y v
cEy [wsinwt + Age?2t — dgcoswt Ay coswt — wsinwt — Ajert?
7 A2+ w? A+ w?

P(l) =

where v = Va2 —4b%, Ay = =5 and Xy = = 2"'7. We note that A; and X, are the eigenvalues of the

system of first order equations equivalent to (23) (which is a damped harmonic oscillator) and since this
represents an asymptotically stable dynamical system [Brauer and Nohel, 1969, p. 151], we have

Re(X;)< 0, for i = 1, 2. Following the previous arguments, we wish to find L given by



where D = ggec F 4+ P and P is given by (24). After some simple integration, this reduces to

E 27 fw
— vz coswt—dt.
2r J, ot

Carrying out the remaining integration and letting Erars = Eo/v/2, after some straightforward but tedious

calculations, we obtain a form for the RF term:

1 = W i AlAQPO _ )\1P1 _ C)\% )\1(627r)\1/w _ 1)
B Eo Eo  (A+w?)/)  (AT+e?)
L (PP X ] (el 1) (25)
Eo By T (N +wh)) 0+

+

1 1 9
CTW )\§+w2 _A%+w2 ERMS

We investigate the behavior of this expression, which can again be written in the form
q= WFE?%MS

where T is the bracketed term in (25). We first consider the behavior as w — 0. We note that as w

27TA1/w

approaches 0, e — 0 since, as stated previously, Re(A1) is less than 0. The same holds for the

exponential involving A;. From this, it is clear that as w — 0,

1 /\1/\2P0—A1P1 1 —)\1/\2P0—|—)\2P1 1
- —||-———————+4c)|—+ (- —c| —
Yy Eo )\1 Eo Az

which is constant and again we see that ¢ — 0 as w — 0. Applying the same arguments as in Section 3.1, it
is easy to see that ¢ — 0 as w — oo which is the same behavior found in the Debye-based term. To see this

note that the terms

C7T(.d2 C7T(.d2

W and m
each approach c¢m as w — oo while all of the other terms approach 0, so we find ¢ — (em — ew)Epps = 0 as
w — 00. Again, this limiting behavior is more intuitively satisfying than the behavior of the standard RF
term given by (1).
Most dielectric materials are quite complicated in their polarization mechanisms and the related
constitutive laws usually cannot be expressed simply in terms of a simple Debye or Lorentz law. However,
it is quite common to model polarization using combinations of multiples of these (and other) simple

polarization relationships [Albanese, 1997], [Oughstun, et.al., 1993]. Adhesives are no less complex with
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respect to polarization. Almost all adhesives (two component epoxies, water based urethanes as well as
more general two component urethanes, acrylics, etc.) involve liquid as well as solid components. Moreover,
during the adhesive curing process, transitions from liquid to solid phases occur, further complicating the
derivation of any polarization based RF heating law. Thus while the above examples illustrate how one
might go about deriving an RF term from a given polarization law and checking it for consistency, it is
most unlikely that either of the specific examples (Debye or Lorentz), used above for illustrative purposes,
will provide an adequate basis for deriving RF terms for many adhesives used in practice. Qur current

research efforts (both theoretical and experimental) are focused precisely on this topic.

4 Summary and implications

We have derived several expressions for the term ¢,;. We see that all of these expressions are of the form
Gr; = wl E%yr5 where the definition of ' depends on the polarization model used in the derivation. More
importantly, we have shown that the standard term (1) widely found in the electromagnetic heating
literature corresponds to a polarization model with inherent inconsistencies. We have thus demonstrated
the need for alternate heating expressions. We follow the same steps used in the usual derivation to derive
alternate expressions based on two well known polarization models - Debye and Lorentz. Based on our
analysis, we suggest that while the Debye and Lorentz models are too simple to approximate the
polarization behavior of most adhesives, they at least result in RF heating terms that possess desired
asymptotic behavior properties lacking in the standard RF expression found in the literature. Moreover,
these examples illustrate an approach that can be followed to derive RF heating expressions based on a
given polarization model.

Arguments for the use of (1) due to the simple fact that ¢’ and ¢” can be found easily through experi-
mentation are not persuasive since the expression is not based on physically realistic material assumptions.
We can relate ¢’ and £” to the Debye model using the form of (14) and to the Lorentz model using (15). For
example, if we know something about 7 in the Debye model, we can use these relationships to determine ¢,
and £, and hence obtain our equation (21) in terms of ¢/ and tan §. Similarly, if we have information about

two of the parameters in the Lorentz medium, we can write (25) in a similar form. Therefore, we see that
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not only do these terms model the desired asymptotic behavior of RF heating more accurately, but with
some information about one or two of the terms, they can be estimated using the same measured quantities
used in the standard RF term (1). There is, of course, a remaining challenge in deriving RF heating terms
based on more realistic polarization assumptions for adhesives while at the same time obtaining RF terms

parameterized in a manner consistent with the reliable estimation of parameters from experimental data.
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